Oncolytic virus
An oncolytic virus is a virus that preferentially infects and kills cancer cells. As the infected cancer cells are destroyed by oncolysis, they release new infectious virus particles or virions to help destroy the remaining tumour.
The potential of viruses as anti-cancer agents was first realised in the early twentieth century, although coordinated research efforts did not begin until the 1960s.
The first oncolytic virus to be approved by a national regulatory agency was genetically unmodified ECHO-7 strain enterovirus RIGVIR, which was approved in Latvia in 2004 for the treatment of skin melanoma;
On December 16, 2022, the Food and Drug Administration approved nadofaragene firadenovec-vncg (Adstiladrin, Ferring Pharmaceuticals) for adult patients with high-risk Bacillus Calmette-Guérin (BCG) unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors.
History
A connection between cancer regression and viruses has long been theorised, and case reports of regression noted in cervical cancer, Burkitt lymphoma, and Hodgkin lymphoma, after immunisation or infection with an unrelated virus appeared at the beginning of the 20th century.
Herpes simplex virus
Herpes simplex virus (HSV) was one of the first viruses to be adapted to attack cancer cells selectively, because it was well understood, easy to manipulate and relatively harmless in its natural state (merely causing cold sores) so likely to pose fewer risks. The herpes simplex virus type 1 (HSV-1) mutant 1716 lacks both copies of the ICP34.5 gene, and as a result is no longer able to replicate in terminally differentiated and non-dividing cells but will infect and cause lysis very efficiently in cancer cells, and this has proved to be an effective tumour-targeting strategy.
In 1996, the first approval was given in Europe for a clinical trial using the oncolytic virus HSV1716. From 1997 to 2003, strain HSV1716 was injected into tumours of patients with glioblastoma multiforme, a highly malignant brain tumour, with no evidence of toxicity or side effects, and some long-term survivors.
Other oncolytic viruses based on HSV have also been developed and are in clinical trials.
Oncorine (H101)
The first oncolytic virus to be approved by a regulatory agency was a genetically modified adenovirus named H101 by Shanghai Sunway Biotech. It gained regulatory approval in 2005 from China's State Food and Drug Administration (SFDA) for the treatment of head and neck cancer.
Mechanisms of action
Immunotherapy
With advances in cancer immunotherapy such as immune checkpoint inhibitors, increased attention has been given to using oncolytic viruses to increase antitumor immunity.
A major obstacle to the success of oncolytic viruses is the patient immune system which naturally attempts to deactivate any virus. This can be a particular problem for intravenous injection, where the virus must first survive interactions with the blood complement and neutralising antibodies.
Pre-existing immunity can be partly avoided by using viruses that are not common human pathogens. However, this does not avoid subsequent antibody generation. Yet, some studies have shown that pre-immunity to oncolytic viruses doesn't cause a significant reduction in efficacy.
Alternatively, the viral vector can be coated with a polymer such as polyethylene glycol, shielding it from antibodies, but this also prevents viral coat proteins adhering to host cells.
Another way to help oncolytic viruses reach cancer growths after intravenous injection, is to hide them inside macrophages (a type of white blood cell). Macrophages automatically migrate to areas of tissue destruction, especially where oxygen levels are low, characteristic of cancer growths, and have been used successfully to deliver oncolytic viruses to prostate cancer in animals.
Although it poses a hurdle by inactivating viruses, the patient's immune system can also act as an ally against tumors; infection attracts the attention of the immune system to the tumour and may help to generate useful and long-lasting antitumor immunity.
Many cases of spontaneous remission of cancer have been recorded. Though the cause is not fully understood, they are thought likely to be a result of a sudden immune response or infection.
Viruses selectively infect tumor cells because of their defective anti-viral response.
Oncolytic behaviour of wild-type viruses
Vaccinia virus
Vaccinia virus (VACV) is arguably the most successful live biotherapeutic agent because of its critical role in the eradication of smallpox, one of the most deadly diseases in human history. Long before the smallpox eradication campaign was launched, VACV was exploited as a therapeutic agent for the treatment of cancer. In 1922, Levaditi and Nicolau reported that VACV was able to inhibit the growth of various tumors in mice and rats. This was the first demonstration of viral oncolysis in the laboratory. This virus was subsequently shown to selectively infect and destroy tumor cells with great potency, while sparing normal cells, both in cell cultures and in animal models. Since vaccinia virus has long been recognized as an ideal backbone for vaccines due to its potent antigen presentation capability, this combines well with its natural oncolytic activities as an oncolytic virus for cancer immunotherapy.
Vesicular stomatitis virus
Vesicular stomatitis virus (VSV) is a rhabdovirus, consisting of 5 genes encoded by a negative sense, single-stranded RNA genome. In nature, VSV infects insects as well as livestock, where it causes a relatively localized and non-fatal illness. The low pathogenicity of this virus is due in large part to its sensitivity to interferons, a class of proteins that are released into the tissues and bloodstream during infection. These molecules activate genetic anti-viral defence programs that protect cells from infection and prevent spread of the virus. However, in 2000, Stojdl, Lichty et al.
Recent research has shown that this virus has the potential to cure brain tumours, thanks to its oncolytic properties.
Poliovirus
Poliovirus is a natural invasive neurotropic virus, making it the obvious choice for selective replication in tumours derived from neuronal cells. Poliovirus has a plus-strand RNA genome, the translation of which depends on a tissue-specific internal ribosome entry site (IRES) within the 5' untranslated region of the viral genome, which is active in cells of neuronal origin and allows translation of the viral genome without a 5' cap. Gromeier et al. (2000)
Reovirus
Reoviruses generally infect mammalian respiratory and bowel systems (the name deriving from an acronym, respiratory enteric orphan virus). Most people have been exposed to reovirus by adulthood; however, the infection does not typically produce symptoms. The reovirus' oncolytic potential was established after they were discovered to reproduce well in various cancer cell lines, lysing these cells.
Reolysin is a formulation of reovirus intended to treat various cancers currently undergoing clinical trials.
Senecavirus
Senecavirus, also known as Seneca Valley Virus, is a naturally occurring wild-type oncolytic picornavirus discovered in 2001 as a tissue culture contaminate at Genetic Therapy, Inc. The initial isolate, SVV-001, is being developed as an anti-cancer therapeutic by Neotropix, Inc. under the name NTX-010 for cancers with neuroendocrine features including small cell lung cancer and a variety of pediatric solid tumours.
RIGVIR
RIGVIR is a drug that was approved by the State Agency of Medicines of the Republic of Latvia in 2004.
Semliki Forest virus
Semliki Forest virus (SFV) is a virus that naturally infects cells of the central nervous system and causes encephalitis. A genetically engineered form has been pre-clinically tested as an oncolytic virus against the severe brain tumour type glioblastoma. The SFV was genetically modified with microRNA target sequences so that it only replicated in brain tumour cells and not in normal brain cells. The modified virus reduced tumour growth and prolonged survival of mice with brain tumours.
Other
The maraba virus, first identified in Brazilian sandflies, is being tested clinically.
Coxsackievirus A21 is being developed by Viralytics under trade name Cavatak.
Influenza A is one of the earliest viruses anecdotally reported to induce cancer regression.
Engineering oncolytic viruses
Directed evolution
An innovative approach of drug development termed "directed evolution" involves the creation of new viral variants or serotypes specifically directed against tumour cells via rounds of directed selection using large populations of randomly generated recombinant precursor viruses. The increased biodiversity produced by the initial homologous recombination step provides a large random pool of viral candidates which can then be passed through a series of selection steps designed to lead towards a pre-specified outcome (e.g. higher tumor specific activity) without requiring any previous knowledge of the resultant viral mechanisms that are responsible for that outcome. The pool of resultant oncolytic viruses can then be further screened in pre-clinical models to select an oncolytic virus with the desired therapeutic characteristics.
Directed evolution was applied on human adenovirus, one of many viruses that are being developed as oncolytic agents, to create a highly selective and yet potent oncolytic vaccine. As a result of this process, ColoAd1 (a novel chimeric member of the group B adenoviruses) was generated. This hybrid of adenovirus serotypes Ad11p and Ad3 shows much higher potency and tumour selectivity than the control viruses (including Ad5, Ad11p and Ad3) and was confirmed to generate approximately two logs more viral progeny on freshly isolated human colon tumour tissue than on matching normal tissue.
Attenuation
Attenuation involves deleting viral genes, or gene regions, to eliminate viral functions that are expendable in tumour cells, but not in normal cells, thus making the virus safer and more tumour-specific. Cancer cells and virus-infected cells have similar alterations in their cell signalling pathways, particularly those that govern progression through the cell cycle.
The enzymes thymidine kinase and ribonucleotide reductase in cells are responsible for DNA synthesis and are only expressed in cells which are actively replicating.
Tumour targeting
There are two main approaches for generating tumour selectivity: transductional and non-transductional targeting.
Double targeting with both transductional and non-transductional targeting methods is more effective than any one form of targeting alone.
Reporter genes
Both in the laboratory and in the clinic it is useful to have a simple means of identifying cells infected by the experimental virus. This can be done by equipping the virus with "reporter genes" not normally present in viral genomes, which encode easily identifiable protein markers. One example of such proteins is GFP (green fluorescent protein) which, when present in infected cells, will cause a fluorescent green light to be emitted when stimulated by blue light.
The E. coli enzymes beta-glucuronidase and beta-galactosidase can also be encoded by some viruses. These enzymes, in the presence of certain substrates, can produce intense colored compounds useful for visualizing infected cells and also for quantifying gene expression.
Modifications to improve oncolytic activity
Oncolytic viruses can be used against cancers in ways that are additional to lysis of infected cells.
Viruses can be used as vectors for delivery of suicide genes, encoding enzymes that can metabolise a separately administered non-toxic pro-drug into a potent cytotoxin, which can diffuse to and kill neighbouring cells. One herpes simplex virus, encoding a thymidine kinase suicide gene, has progressed to phase III clinical trials. The herpes simplex virus thymidine kinase phosphorylates the pro-drug, ganciclovir, which is then incorporated into DNA, blocking DNA synthesis.
Angiogenesis (blood vessel formation) is an essential part of the formation of large tumour masses. Angiogenesis can be inhibited by the expression of several genes, which can be delivered to cancer cells in viral vectors, resulting in suppression of angiogenesis, and oxygen starvation in the tumour. The infection of cells with viruses containing the genes for angiostatin and endostatin synthesis inhibited tumour growth in mice. Enhanced antitumour activities have been demonstrated in a recombinant vaccinia virus encoding anti-angiogenic therapeutic antibody and with an HSV1716 variant expressing an inhibitor of angiogenesis.
Addition of the sodium-iodide symporter (NIS) gene to the viral genome causes infected tumour cells to express NIS and accumulate iodine. When combined with radioiodine therapy it allows local radiotherapy of the tumour, as used to treat thyroid cancer. The radioiodine can also be used to visualise viral replication within the body by the use of a gamma camera.
Approved therapeutic agents
Oncolytic viruses in conjunction with existing cancer therapies
It is in conjunction with conventional cancer therapies that oncolytic viruses have often showed the most promise, since combined therapies operate synergistically with no apparent negative effects.
Clinical trials
Onyx-015 (dl1520) underwent trials in conjunction with chemotherapy before it was abandoned in the early 2000s. The combined treatment gave a greater response than either treatment alone, but the results were not entirely conclusive.
Pre-clinical research
Chen et al. (2001)
SEPREHVIR (HSV-1716) has also shown synergy in pre-clinical research when used in combination with several cancer chemotherapies.
The anti-angiogenesis drug bevacizumab (anti-VEGF antibody) has been shown to reduce the inflammatory response to oncolytic HSV and improve virotherapy in mice.
In fiction
In science fiction, the concept of an oncolytic virus was first introduced to the public in Jack Williamson's novel Dragon's Island, published in 1951, although Williamson's imaginary virus was based on a bacteriophage rather than a mammalian virus.