Cultured meat
Cultured meat, also known as cultivated meat among other names, is a form of cellular agriculture where meat is produced by culturing animal cells in vitro.
In 2013, Mark Post created a hamburger patty made from tissue grown outside of an animal. Since then, other cultured meat prototypes have gained media attention: SuperMeat opened a farm-to-fork restaurant, called "The Chicken",
While most efforts focus on common meats such as pork, beef, and chicken which constitute the bulk of consumption in developed countries,
The production process is constantly evolving, driven by companies and research institutions.
Nomenclature
Besides cultured meat, the terms healthy meat,
Between 2016 and 2019, clean meat gained traction. The Good Food Institute (GFI) coined the term in 2016,
In September 2019, GFI announced new research which found that the term cultivated meat is sufficiently descriptive and differentiating, possesses a high degree of neutrality, and ranks highly for consumer appeal.
History
Initial research
The theoretical possibility of growing meat in an industrial setting has long been of interest. In a 1931 essay published by various periodicals and later included in his work Thoughts and Adventures, British statesman Winston Churchill wrote: "We shall escape the absurdity of growing a whole chicken to eat the breast or wing, by growing these parts separately under a suitable medium."
In the 1950s, Dutch researcher Willem van Eelen independently came up with the idea for cultured meat. As a prisoner of war during the Second World War, Van Eelen suffered from starvation, leaving him passionate about food production and food security.
In 2001, dermatologist Wiete Westerhof along with van Eelen and businessperson Willem van Kooten announced that they had filed for a worldwide patent on a process to produce cultured meat.
In the early 2000s, American public health student Jason Matheny traveled to India and visited a factory chicken farm. He was appalled by the implications of this system. Matheny later teamed up with three scientists involved in NASA's efforts. In 2004, Matheny founded New Harvest to encourage development by funding research. In 2005, the four published the first peer-reviewed literature on the subject.
In May 2008, PETA offered a $1 million prize to the first company to bring cultured chicken meat to consumers by 2012.
The Dutch government has invested $4 million into experiments regarding cultured meat.
First public trial
The first cultured beef burger patty was created by Mark Post at Maastricht University in 2013.
Industry development
It's just a matter of time before this is gonna happen, I'm absolutely convinced of that. In our case, I estimate the time to be about 3 years before we are ready to enter the market on a small scale, about 5 years to enter the market on a larger scale, and if you'd ask me: "When will
Peter Verstrate, Mosa Meat (2018)
Between 2011 and 2017, many cultured meat startups were launched. Memphis Meats, now known as Upside Foods,
In March 2018, Eat Just (in 2011 founded as Hampton Creek in San Francisco, later known as Just, Inc.) claimed to be able to offer a consumer product from cultured meat by the end of 2018. According to CEO Josh Tetrick the technology was already there. JUST had about 130 employees and a research department of 55 scientists, where cultured meat from poultry, pork and beef was researched. JUST has received investments from Chinese billionaire Li Ka-shing, Yahoo! co-founder Jerry Yang and according to Tetrick also by Heineken International and others.
There is a handful
Krijn de Nood, Meatable (2020)
Dutch startup Meatable, consisting of Krijn de Nood, Daan Luining, Ruud Out, Roger Pederson, Mark Kotter and Gordana Apic among others, reported in September 2018 that it had succeeded in growing meat using pluripotent stem cells from animal umbilical cords. Although such cells are reportedly difficult to work with, Meatable claimed to be able to direct them to behave to become muscle or fat cells as needed. The major advantage is that this technique bypasses fetal bovine serum, meaning that no animal has to be killed to produce meat.
In August 2019, five American startups announced the formation of the Alliance for Meat, Poultry & Seafood Innovation (AMPS Innovation), a coalition seeking to work with regulators to create a pathway to market for cultured meat and seafood.
In October 2019, Aleph Farms collaborated with 3D Bioprinting Solutions to culture meat on the International Space Station. This was done by extruding meat cells onto a scaffold using a 3D printer.
In December 2019, the Foieture project was launched in Belgium with the goal of developing cultured foie gras (the name is a portmanteau of 'foie' and 'future') by a consortium of 3 companies (cultured-meat startup Peace of Meat, small meat-seasoning company Solina, and small pâté-producing company Nauta) and 3 non-profit institutes (university KU Leuven, food industry innovation centre Flanders Food, and Bio Base Europe Pilot Plant).
In November 2020, Indian start-up Clear Meat claimed it had managed to cultivate chicken mince at the cost of only 800–850 Indian rupees (US$10.77–11.44), while a slaughtered processed chicken cost about 1,000 rupees.
Market entry
In the European Union, novel foods such as cultured meat products have to go through a testing period of about 18 months during which a company must prove to the European Food Safety Authority (EFSA) that their product is safe.
In November 2020, SuperMeat opened a test restaurant in Ness Ziona, Israel, right next to its pilot plant; journalists, experts and a small number of consumers could book an appointment to taste the novel food there, while looking through a glass window into the production facility on the other side. The restaurant was not yet fully open to the public, because as of June 2021 SuperMeat still needed to wait for regulatory approval to start mass production for public consumption, and because the COVID-19 pandemic restricted restaurant operations.
In January 2024, the Ministry of Health in Israel granted regulatory approval for cultured beef.
On 2 December 2020, the Singapore Food Agency approved the "chicken bites" produced by Eat Just for commercial sale. It marked the first time that a cultured meat product passed the safety review (which took 2 years) of a food regulator, and was widely regarded as a milestone for the industry. The chicken bits were scheduled for introduction in Singaporean restaurants.
In January 2023, the SFA also granted regulatory approval for the production of cultured meat with serum-free media to Eat Just' subsidiary GOOD Meat, which had introduced its clean chicken product in several more Singaporese restaurants as well as hawker centres and food delivery services since 2020, and was constructing the bioreactors for its new facility in Singapore.
In November 2022, the Food and Drug Administration (FDA) completed the pre-market consultation of Upside Foods (formerly Memphis Meats), concluding that its products were safe to eat, a first for cultivated meat companies in the United States.
Companies working on cultured meat
Note: dates in italics refer to projected dates of achievement in the future; they may shift.
In addition to these companies, non-profit organizations such as New Harvest, the Good Food Institute, ProVeg International
Pilot plants
Note: data in italics refer to unfinished projects or projected capacities in the future; they may shift.
Process
Cell lines
Cellular agriculture requires cell lines, generally stem cells. Stem cells are undifferentiated cells which have the potential to become many or all of the required kinds of specialized cell types. Totipotent stem cells have the capacity to differentiate into all the different cell types found within the body. Pluripotent stem cells can mature into all cell types save those in the placenta, and multipotent stem cells can differentiate into several specialized cell types within one lineage. Unipotent stem cells can differentiate into one specific cell fate.
While pluripotent stem cells would be an ideal source, the most prominent example of this subcategory is embryonic stem cells which—due to ethical issues—are controversial for use in research. As a result, scientists have developed induced pluripotent stem cells (iPSCs)—essentially multipotent blood and skin cells that have been regressed to a pluripotent state enabling them to differentiate into a greater range of cells.
Favourable characteristics of stem cells include immortality, proliferative ability, unreliance on adherence, serum independence and easy differentiation into tissue. The natural presence of such characteristics are likely to differ across cell species and origin. As such, in vitro cultivation must be adjusted to fill the exact needs of a specific cell line. The immortality issue is that cells have a limit on the number of times they can divide that is dictated by their telomere cap—supplementary nucleotide bases added to the end of their chromosomes. With each division, the telomere cap progressively shortens until nothing remains, at which time the cells cease to divide. Induced pluripotency can lengthen telomere cap such that the cells divide indefinitely.
Cell lines can be collected from a primary source, i.e., through a biopsy on an animal under local anesthesia. They could also be established from secondary sources such as cryopreserved cultures (cultures frozen after previous research).
Growth medium
Once cell lines are established, they are immersed in a culture media to induce them to proliferate. Culture media are typically formulated from basal media that provide cells with necessary carbohydrates, fats, proteins and salts. Once a cell consumes a sufficient amount, it divides and the population increases exponentially. Culture media can be supplemented with additives—for instance sera—that supply additional growth factors. Growth factors can be secreted proteins or steroids that are crucial in regulating cellular processes.
Once differentiation begins, muscle fibres begin to contract and generate lactic acid. Cells' ability to absorb nutrients and proliferate in part depends on the pH of their environment. As lactic acid accumulates within the media, the environment will become progressively more acidic and falls below the optimal pH. As a result, culture media must be frequently refreshed. This helps refresh the concentration of nutrients from the basal media.
Scaffold
In the case of structured meat products—products that are characterized by their overall configuration as well as cell type—cells must be seeded to scaffolds. Scaffolds are essentially molds meant to reflect and encourage the cells to organize into a larger structure. When cells develop in vivo, they are influenced by their interactions with the extracellular matrix (ECM). The ECM is the 3-dimensional mesh of glycoproteins, collagen and enzymes responsible for transmitting mechanical and biochemical cues to the cell. Scaffolds need to simulate the characteristics of the ECM.
Pores are minute openings on the surface of the scaffold. They can be created on the surface of the biomaterial in order to release cellular components that could interfere with tissue development. They also help diffuse gas and nutrients to the innermost layers of adherent cells, preventing a "necrotic center" from forming. A necrotic center is a phenomenon in which cells that are not in direct contact with the culture medium die from a lack of nutrients.
Vascular tissue found in plants contains the organs responsible for internally transporting fluids. It forms natural topographies that provide a low cost way to promote cell alignment by replicating the natural physiological state of myoblasts. It may also help with gas and nutrient exchange.
A scaffold's biochemical properties should be similar to those of the ECM. It must facilitate cell adhesion through textural qualities or chemical bonding. Additionally, it must produce the chemical cues that encourage cell differentiation. Alternatively, the material should be able to blend with other substances which have these functional qualities.
The degree of a material's crystallinity determines qualities such as rigidity. High crystallinity can be attributed to hydrogen bonding which in turn increases thermal stability, tensile strength (important for maintaining the scaffold's shape), water retention (important for hydrating the cells) and Young's modulus.
Certain materials degrade into compounds that are beneficial to cells, although this degradation can also be irrelevant or detrimental. Degradation allows easy removal of the scaffold from the finished product leaving only animal tissue—thereby increasing its resemblance to in vivo meat. This degradation can be induced by exposure to certain enzymes which do not impact the muscle tissue.
If scaffolds are unable to be removed from the animal tissue, they must be edible to ensure consumer safety. It would be beneficial if they were to be made out of nutritious ingredients.
Cellulose is the most abundant polymer in nature and provides the exoskeletons of plant leaves. Due to its abundance, it can be obtained at a relatively low cost. It is also versatile and biocompatible. Through a process called "decellularization", it is coated in a surfactant that creates pores. These pores release the plant's cellular components, and it becomes decellularized plant tissue. This material has been extensively studied by the Pelling and Gaudette Groups at University of Ottawa and Worcester Polytechnic Institute, respectively. Through cross-linking (forming covalent bonds between individual polymer chains to hold them together) the plant tissue's mechanical properties can be changed so that it more closely resembles muscle tissue. This can also be done by blending plant tissue with other materials. On the other hand, decellularized plant tissue typically lacks mammalian biochemical cues, so it needs to be coated with compensatory functional proteins. C2C12 growth was not shown to change significantly between the bare scaffold and the same scaffold with a coating of collagen or gelatin proteins; however, seeding efficiency (rate at which cells attach to the scaffold) improved.
An advantage of decellularized plant tissue is the natural topography afforded by the leaf vasculature. This helps replicate the natural physiological state of the myoblasts which promotes cell alignment. The other ways of doing this are usually quite a bit more expensive including 3D printing, soft lithography and photolithography. Vascularization can also help overcome the 100–200 nm diffusion limit of culture medium into cells that usually produce necrotic centres in muscle conglomerates. Another way to do this is by having a porous scaffold which supports angiogenesis (the development of new blood vessels). While this has been shown to work for apple Hypanthium, not all plants are nearly as porous. The alternative to plant cellulose is bacterial cellulose which is typically more pure than plant cellulose as it is free from contaminants such as lignin and hemicellulose. Bacterial cellulose has more hydrogen bonding between its polymer strands and so it has greater crystallinity. It also has smaller microfibrils that allow it to retain more moisture and have smaller pores. The substance can be produced using waste carbohydrates (which may allow it to be produced less expensively) and it adds juiciness and chewiness to emulsified meat (which would mean that even if it can't be taken out of the final product, it will contribute to the texture profile).
Chitin is nature's second most abundant polymer. It is found in the exoskeletons of crustaceans and fungi. As cellular agriculture is attempting to end reliance on animals, chitin derived from fungi is of greater interest. It has mostly been studied by Pelling Group. Chitosan is derived from chitin in a process known as alkaline deacetylation (substituting out certain amino acid groups). The degree of this process determines the physical and chemical properties of the chitosan. Chitosan has antibacterial properties; in particular, it has bactericidal effects on planktonic bacteria and biofilms and a bacteria static effects on gram negative bacteria such as E. coli. This is important as it neutralizes potentially harmful compounds without using antibiotics, which many consumers avoid. Chitosan's resemblance to glycosaminoglycans and internal interactions between glycoproteins and proteoglycans make it highly biocompatible. It can easily blend with other polymers in order to select for more bioactive factors. One potential disadvantage of chitosan is that it degrades in the presence of lysozymes (naturally occurring enzymes). But, this can be resisted using deacetylation. This is not entirely negative, as the byproducts produced through degradation have anti-inflammatory and anti-bacterial properties. It is important to match the level that cells rely on the matrix for structure with degradation.
Collagen is a family of proteins that makes up the primary structure of human connective tissue. It is typically derived from bovine, porcine and murine sources. Cellular agriculture overcomes this dependency through the use of transgenic organisms that are capable of producing the amino acid repeats that make up the collagen. Collagen naturally exists as collagen type I. It has been produced as porous hydrogels, composites and substrates with topographical cues and biochemical properties. Synthetic kinds of collagen have been produced through recombinant protein production—collagen type II and III, tropoelastin and fibronectin. One challenge with these proteins is that they can not be modified post translation. However, an alternative fibrillar protein has been isolated in microbes that lack collagen's biochemical cues, but has its kind of gene customizability. One focus of recombinant collagen production is yield optimization—how it can be produced most effectively. Plants, in particular, tobacco look like the best option, however, bacteria and yeast are also viable alternatives.
Textured soy protein is a soy flour product often used in plant-based meat that supports the growth of bovine cells. Its spongy texture enables efficient cell seeding and its porosity encourages oxygen transfer. Additionally, it degrades during cell differentiation into compounds that are beneficial to certain cells.
Mycelium are the roots of mushrooms. Altast Foods Co. is using solid state fermentation to grow mushroom tissue on mycelium scaffolds. They harvest this tissue and use it to create bacon analogs.
Nanomaterials exhibit unique properties at the nanoscale. London-based Biomimetic Solutions is leveraging nanomaterials in order to create scaffolds.
Immersion Jet Spinning is a method of creating scaffolds by spinning polymers into fibres. It was developed by the Parker Group at Harvard. Their platform uses centrifugal force to extrude a polymer solution through an opening in a rotating reservoir. During extrusion, the solution forms a jet that elongates and aligns as it crosses the air gap. The jet is directed into a vortex-controlled precipitation bath that chemically cross links or precipitates polymer nanofibers. Adjusting air gap, rotation and the solution changes the diameter of the resulting fibres. This method can spin scaffolds out of PPTA, nylon, DNA and nanofiber sheets. A nanofibrous scaffold made from alginate and gelatin was able to support the growth of C2C12 cells. Rabbit and bovine aortic smooth muscle myoblasts were able to adhere to the gelatin fibres. They formed aggregates on shorter fibres, and aligned tissue on the longer ones.
Additive manufacturing
Another proposed way of structuring muscle tissue is additive manufacturing. Such a technique was perfected for industrial applications in manufacturing objects made out of plastic, metal, glass and other synthetic materials. The most common variation of the process involves incrementally depositing a filament in layers onto a bed until the object is completed. This method will most likely lend itself best to the application of cultured meat as opposed to other types such as binder jetting, material jetting or stereolithography that require a specific kind of resin or powder.
A filament of muscle cells can be printed into a structure meant to resemble a finished meat product which can then be further processed for cell maturation. This technique has been demonstrated in a collaboration between 3D bioprinting solutions and Aleph Farms that used additive manufacturing to structure turkey cells on the International Space Station.
Bioreactors
Scaffolds are placed inside bioreactors so that cell growth and specialization can occur. Bioreactors are large machines similar to brewery tanks which expose the cells to a large variety of environmental factors that are necessary to promote either proliferation or differentiation. The temperature of the bioreactor must replicate in vivo conditions. In the case of mammalian cells, this requires heating to 37 °C (99 °F). Alternatively, insect cells can be grown at room temperature. Most bioreactors are maintained at 5% carbon dioxide.
Stirred tank bioreactors are the most widely used configuration. An impeller increases the flow, thereby homogenizing the culture media and a diffuser facilitates the exchange of oxygen into the media. This system is generally used for suspended cultures but can be used for cells that require attachment to another surface if microcarriers are included. Fixed bed bioreactors are commonly used for adherent cultures. They feature strips of fibres that are packed together to form a bed to which cells can attach. Aerated culture media is circulated through the bed. In airlift bioreactors, the culture media is aerated into a gaseous form using air bubbles which are then scattered and dispersed amongst the cells. Perfusion bioreactors are common configurations for continuous cultivation. They continuously drain media saturated with lactic acid that is void of nutrients and fill it with replenished media.
Challenges
Growth factors
The culture media is an essential component of in vitro cultivation. It is responsible for providing the macromolecules, nutrients and growth factors necessary for cell proliferation. Sourcing growth factors is one of the most challenging tasks of cellular agriculture. Traditionally, it involves the use of fetal bovine serum (FBS) which is a blood product extracted from fetal cows. Besides the argument that its production is unethical, it also violates the notion that the cultured meat is produced independent of the use of animals. It is also the most costly constituent of cultured meat, priced at around $1000 per litre. Furthermore, chemical composition varies greatly depending on the animal, so it cannot be uniformly quantified chemically.
The current alternative is to generate each growth factor individually using recombinant protein production. In this process, the genes coding for the specific factor are integrated into bacteria which are then fermented. Due to the added complexity of this process, it is particularly expensive.
The ideal medium would be chemically quantifiable and accessible to ensure simplicity in production, cheap and not dependent on animals.
The Good Food Institute (GFI) put out a report in 2019 in support of the concept that cell-based meat could be produced at the same cost as ground beef and in 2021 they commissioned a report from CE Delft on the Techno-Economic Analysis of cultivated meat.
Surface area
A common challenge to bioreactors and scaffolds is developing system configurations that enable all cells to gain exposure to culture media while simultaneously optimizing spatial requirements. In the cell proliferation phase, prior to the introduction of the scaffold, many cell types need to be attached to a surface to support growth. As such, cells must be grown in confluent monolayers only one cell thick which necessitates a lot of surface area. This poses practical challenges on large scales. As such, systems may incorporate microcarriers—small spherical beads of glass or other compatible material that are suspended in the culture medium. Cells adhere to these microcarriers as they would to the sides of the bioreactor, which increases the amount of surface area.
In the cell differentiation phase, the cells may be seeded to a scaffold and so do not require the use of microcarriers. However, in these instances, the density of the cells on the scaffold means that not all cells have an interface with culture media, leading to cell death and necrotic centers within the meat. When muscle is cultivated in vivo, this issue is circumvented as the extracellular matrix delivers nutrients into the muscle through blood vessels. As such, many emerging scaffolds aim to replicate such networks.
Similarly, scaffolds must simulate many of the other characteristics of the extracellular matrix, most notably porosity, crystallinity, degradation, biocompatibility and functionality. Few materials that emulate all these characteristics have been identified, leading to the possibility of blending different materials with complementary properties.
Research support
Cellular agriculture research does not have a significant basis of academic interest or funding streams.
The European Union's Horizon 2020 R&D funding framework awarded a €2.7 million grant to a consortium led by BioTech Foods.
Consumer acceptance
Consumer acceptance of the product is critical.
The use of standardized descriptions would improve future research about consumer acceptance of cultured meat. Current studies have often reported drastically different rates of acceptance, despite similar survey populations.
Global market acceptance has not been assessed. Studies are attempting to determine the current levels of consumer acceptance and identify methods to improve this value. Clear answers are not available, although one recent study reported that consumers were willing to pay a premium for cultured meat.
Regulations
In 2020, Singapore became the first country in the world to approve cultured meat for sale. The Singapore Food Agency has published guidance on its requirements for the safety assessment of novel foods, including specific requirements on the information to be submitted for approval of cultivated meat products.
In March 2023, Italy's Meloni government approved a draft bill banning the production and commercialization of cultivated meat for human and animal consumption;
Regulatory matters must also be sorted out. Prior to being available for sale, the European Union, Australia, New Zealand, the United Kingdom, and Canada require approved novel food applications. Additionally, the European Union requires that cultured animal products and production must prove safety, by an approved company application, as of 1 January 2018.
Differences from conventional meat
Health
Large-scale production of cultured meat may or may not require artificial growth hormones to be added to the culture for meat production.
Researchers have suggested that omega-3 fatty acids could be added to cultured meat as a health bonus.
Due to the strictly controlled and predictable environment, cultured meat production has been compared to vertical farming. Some of its proponents have predicted that it will have similar benefits in terms of reducing exposure to dangerous chemicals like pesticides and fungicides, severe injuries, and wildlife.
Artificiality
Although cultured meat consists of animal muscle cells, fat and support cells, as well as blood vessels,
Environment
Animal production for food is a major cause of air/water pollution and carbon emissions.
One study reported that cultured meat was "potentially ... much more efficient and environmentally-friendly". It generated only 4% of greenhouse gas emissions, reduced the energy needs of meat production by up to 45%, and required only 2% of the land that the global meat/livestock industry does.
The latest study by independent research firm CE Delft shows that—compared with conventional beef—cultured meat may cause up to 92% less greenhouse gas emissions if renewable energy is used in the production process, 93% less pollution, up to 95% less land use and 78% less water.
Skeptic Margaret Mellon of the Union of Concerned Scientists speculates that the energy and fossil fuel requirements of large-scale cultured meat production may be more environmentally destructive than producing food off the land.
Role of genetic modification
Techniques of genetic engineering, such as insertion, deletion, silencing, activation, or mutation of a gene, are not required to produce cultured meat. Cultured meat production allows the biological processes that normally occur within an animal to occur without the animal. Since cultured meat is grown in a controlled, artificial environment, some have commented that cultured meat more closely resembles hydroponic vegetables, rather than genetically modified vegetables.
More research is underway on cultured meat, and although cultured meat does not require genetic engineering, researchers may employ such techniques to improve quality and sustainability. Fortifying cultured meat with nutrients such as beneficial fatty acids is one improvement that can be facilitated through genetic modification. The same improvement can be made without genetic modification, by manipulating the conditions of the culture medium.
To avoid the use of any animal products, the use of photosynthetic algae and cyanobacteria has been proposed to produce the main ingredients for the culture media, as opposed to fetal bovine or horse serum.
Ethical
Australian bioethicist Julian Savulescu said, "Artificial meat stops cruelty to animals, is better for the environment, could be safer and more efficient, and even healthier. We have a moral obligation to support this kind of research. It gets the ethical two thumbs up."
Some have proposed independent inquiries into the standards, laws, and regulations for cultured meat.
Establishing a similar parallel with cultured meat, some environmental activists claim that adopting a vegetarian diet may be a way of focusing on personal actions and righteous gestures rather than systemic change. Environmentalist Dave Riley states that "being meatless and guiltless seems seductively simple while environmental destruction rages around us", and writes that Mollison "insists that vegetarianism drives animals from the edible landscape so that their contribution to the food chain is lost".
Religious considerations
Jewish rabbinical authorities disagree whether cultured meat is kosher, meaning acceptable under Jewish law and practice. One factor is the nature of the animal from which the cells are sourced, whether it is a kosher or non-kosher species and whether, if the cells were taken from a dead animal, slaughter in accordance with religious practice had taken place prior to the extraction of cells. Most authorities agree that if the original cells were taken from a religiously slaughtered animal then the meat cultured from it will be kosher.
Islamic dietary practices must also be considered.
Catholicism, which excludes eating meat in certain days along the year (Lent, Holy Week), has not pronounced on whether cultivated meat is banned (as it happens with meat) or not (as with any other food as vegetables or fish). Hinduism typically excludes the consumption of beef, such as steak and burgers. Chandra Kaushik, president of the Hindu Mahasabha, said about cultured beef that he would "not accept it being traded in a marketplace in any form or being used for a commercial purpose."
Economic
Cultured meat is significantly more costly than conventional meat. In a March 2015 interview, Post said that the marginal cost of his team's original €250,000 burger was now €8.00. He estimated that technological advancements would allow the product to be cost-competitive to traditionally sourced beef in approximately ten years.
Farmers
A scientific paper published in Front. Sustain. Food Syst. addresses the social and economic opportunities and challenges of cultured and plant-based meat for rural producers. According to this research, cellular agriculture offers "opportunities such as growing crops as ingredients for feedstock for cultured meat; raising animals for genetic material for cultured meat; producing cultured meat in bioreactors at the farm level; transitioning into new sectors; new market opportunities for blended and hybrid animal- and alt-meat products; and new value around regenerative or high-animal welfare farming." Some challenges are also identified, with possible "loss of livelihood or income for ranchers and livestock producers and for farmers growing crops for animal feed; barriers to transitioning into emerging alt-meat sectors; and the possibility of exclusion from those sectors." Some farmers already see the potential of cellular agriculture. For instance, Illtud Dunsford comes from a long line of farmers in Wales and established his cultured meat company Cellular Agriculture Ltd in 2016.
Continuing development
Education
In 2015, Maastricht University hosted the first International Conference on Cultured Meat.
Research
Research continues on many fronts, including entomoculture, interactome maps of cardiac tissue,
Accelerators and incubators
Multiple venture capital firms and accelerator/incubator programs focus on assisting cultured technology startups, or plant-based protein companies in general. The Big Idea Ventures (BIV) Venture Capital firm launched their New Protein Fund to invest in emerging cell and plant-based food companies in New York and Singapore. They invested in MeliBio, Actual Veggies, Biftek.co, Orbillion Bio, Yoconut, Evo, WildFor and Novel Farms.
In popular culture
Cultured meat has often featured in science fiction. The earliest mention may be in Two Planets (1897) by Kurd Lasswitz, where "synthetic meat" is one of the varieties of synthetic food introduced on Earth by Martians. Other notable books mentioning artificial meat include Ashes, Ashes (1943) by René Barjavel; The Space Merchants (1952) by Frederik Pohl and C.M. Kornbluth; The Restaurant at the End of the Universe (1980) by Douglas Adams; Le Transperceneige (Snowpiercer) (1982) by Jacques Lob and Jean-Marc Rochette; Neuromancer (1984) by William Gibson; Oryx and Crake (2003) by Margaret Atwood; Deadstock (2007) by Jeffrey Thomas; Accelerando (2005) by Charles Stross; Ware Tetralogy by Rudy Rucker; Divergent (2011) by Veronica Roth; and the Vorkosigan Saga (1986–2018) by Lois McMaster Bujold.
In film, artificial meat has featured prominently in Giulio Questi's 1968 drama La morte ha fatto l'uovo (Death Laid an Egg) and Claude Zidi's 1976 comedy L'aile ou la cuisse (The Wing or the Thigh). "Man-made" chickens also appear in David Lynch's 1977 surrealist horror, Eraserhead. Most recently, it was also featured prominently as the central theme of the movie Antiviral (2012).
In the movie Galaxy Quest during the dinner scene, Tim Allen's character refers to his steak tasting like "real Iowa beef".
In February 2014, a biotech startup called BiteLabs ran a campaign to generate popular support for artisanal salami made with meat cultured from celebrity tissue samples.
In late 2016, cultured meat was involved in a case in the episode "How The Sausage Is Made" of CBS show Elementary.
Related processes
Fermentation
Acellular agriculture is producing animal products synthesized from non-living material. Such products include milk, honey, eggs, cheese, and gelatin which are made of various proteins rather than cells. These proteins must be fermented much like in recombinant protein production, alcohol brewing and the generation of many plant-based products like tofu, tempeh and sauerkraut.
Proteins are coded for by specific genes, the genes coding for the protein of interest are synthesized into a plasmid—a closed loop of double helical genetic information. This plasmid, called recombinant DNA, is then inserted into a bacterial specimen. For this to happen, the bacteria needs to be competent (i.e. able to accept foreign, extracellular DNA) and able to horizontally transfer genes (i.e. integrate the foreign genes into its own DNA). Horizontal gene transfer is significantly more challenging in eukaryotic organisms than prokaryotic organisms because the former have both a cell membrane and a nuclear membrane which the plasmid needs to penetrate whereas prokaryotic organisms only have a cell membrane. For this reason, prokaryotic bacteria are often favoured. In order to make such a bacteria temporarily competent, it can be exposed to a salt such as calcium chloride, which neutralizes the negative charges on the cell membrane's phosphate heads as well as the negative charges on the plasmid to prevent the two from repelling. The bacteria can incubate in warm water, opening large pores on the cell surface through which the plasmid can enter.