6G
In telecommunications, 6G is the designation for a future technical standard of a sixth-generation technology for wireless communications.
It is the planned successor to 5G (ITU-T IMT-2020), and is currently in the early stages of the standardization process, tracked by the ITU-T as IMT-2030
Numerous companies (Airtel, Anritsu, Apple, Ericsson, Fly, Huawei, Jio, Keysight, LG, Nokia, NTT Docomo, Samsung, Vi, Xiaomi), research institutes (Technology Innovation Institute, the Interuniversity Microelectronics Centre) and countries (United States, countries in the European Union, Russia, China, India, Japan, South Korea, Singapore and United Arab Emirates) have shown interest in 6G networks, and are expected to contribute to this effort.
6G networks will likely be significantly faster than previous generations,
The NGMN alliance have cautioned that "6G must not inherently trigger a hardware refresh of 5G RAN infrastructure", and that it must "address demonstrable customer needs".
Expectations
6G networks are expected to be developed and released by the late 2020s.
Features
Recent academic publications have been conceptualizing 6G and new features that may be included. Artificial intelligence (AI) is included in many predictions, from 6G supporting AI infrastructure to "AI designing and optimizing 6G architectures, protocols, and operations."
Transmission
The frequency bands for 6G are undetermined. The Institute of Electrical and Electronics Engineers states that "Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum."
One of the challenges in supporting the required high transmission speeds will be the limitation of energy consumption and associated thermal protection in the electronic circuits.
Terahertz and millimeter wave progress
Millimeter waves (30 to 300 GHz) and terahertz radiation (300 to 3000 GHz) might, according to some speculations, be used in 6G. The wave propagation of these frequencies is much more sensitive to obstacles than the microwave frequencies (about 2 to 30 GHz) used in 5G and Wi-Fi, which are more sensitive than the radio waves used in 1G, 2G, 3G and 4G.
In October 2020, the Alliance for Telecommunications Industry Solutions (ATIS) launched a "Next G Alliance", an alliance consisting of AT&T, Ericsson, Telus, Verizon, T-Mobile, Microsoft, Samsung, and others that "will advance North American mobile technology leadership in 6G and beyond over the next decade."
In January 2022, Purple Mountain Laboratories of China claimed that its research team had achieved a world record of 206.25 gigabits per second (Gbit/s) data rate for the first time in a lab environment within the terahertz frequency band, which is supposed to be the base of 6G cellular technology.
In February 2022, Chinese researchers stated that they had achieved a record data streaming speed using vortex millimetre waves, a form of extremely high-frequency radio wave with rapidly changing spins, the researchers transmitted 1 terabyte of data over a distance of 1 km (3,300 feet) in a second. The spinning potential of radio waves was first reported by British physicist John Henry Poynting in 1909, but making use of it proved to be difficult. Zhang and colleagues said their breakthrough was built on the hard work of many research teams across the globe over the past few decades. Researchers in Europe conducted the earliest communication experiments using vortex waves in the 1990s. A major challenge is that the size of the spinning waves increases with distance, and the weakening signal makes high-speed data transmission difficult. The Chinese team built a unique transmitter to generate a more focused vortex beam, making the waves spin in three different modes to carry more information, and developed a high-performance receiving device that could pick up and decode a huge amount of data in a split second.
In 2023, Nagoya University in Japan reported successful fabrication of three-dimensional wave guides with niobium metal,
Test satellites
On November 6, 2020, China launched a Long March 6 rocket with a payload of thirteen satellites into orbit. One of the satellites reportedly served as an experimental testbed for 6G technology, which was described as "the world's first 6G satellite."
Geopolitics
During rollout of 5G, China banned Ericsson in favour of Chinese suppliers, primarily Huawei and ZTE.
6G is considered a key technology for economic competitiveness, national security, and the functioning of society. It is a national priority in many countries and is named as priority in China's Fourteenth five-year plan.